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ABSTRACT Following the numerous attacks that exploited vulnerabilities of Controller Area Networks
(CAN), intrusion detection systems have become a topic of prime importance for in-vehicle buses. Newer
in-vehicle communication layers, such as CAN-FD, despite the larger payloads which can easily integrate
cryptographic elements, need similar attention. But detecting intrusions may call for demanding algorithms
that are not computationally cheap while timely detection is necessary in order to process frames in real-time
and take the appropriate actions. In this work we evaluate the performance of several binary classifiers
on traditional in-vehicle Electronic Control Units (ECUs) and compare them to modern Android devices
which have become widespread inside cars with the adoption of Android-capable infotainment systems.
Needless to say, these modern devices benefit from higher computational and memory resources while cloud
connectivity may alleviate computational costs even further. Contrasting between traditional controllers and
Android devices has become necessary and so far there have been little efforts in this direction. To create
a realistic testbed, we use collected in-vehicle CAN bus traffic from an SUV as well as more demanding
logs from Advanced Driver-assistance Systems (ADAS) implemented on CAN-FD which we augment with

adversarial activity.

INDEX TERMS CAN bus, electronic control unit, intrusion detection systems, machine learning.

I. INTRODUCTION

Modern cars are equipped with a high number of Electronic
Control Units (ECUs) that are used to accomplish various
functions, e.g., breaking and stability control, advanced driver
assistance, comfort features, etc. Depending on the specific
market segment, i.e., economy or luxury, vehicles may be
equipped with more or less features and consequently the
number of ECUs may range from a dozen or less up to more
than a hundred. As the automotive industry is heading toward
new trends, such as electrification, autonomous driving or
vehicle-to-vehicle communication, we can only expect the
number of ECUs and their interconnectivity to increase. The
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same is implied by recent regulations which are pushing the
vehicle industry to evolve in terms of electronics by develop-
ing new technologies that will make the driving experience
safer and decrease the environmental pollution or energy
consumption. But as a side-effect to the increased complexity
of in-vehicle electronics and interconnectivity, the number of
attack surfaces will increase as well.

More than three decades after its introduction by BOSCH,
the Controller Area Network (CAN) is still the most com-
monly used communication protocol inside vehicles which
makes it one of the most important assets that requires pro-
tection against malicious attacks. But the security of CAN
buses is lacking since no mechanisms were put in place at
design time and CAN offers no protection against malicious
adversaries. The potential of attacking in-vehicle networks
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FIGURE 1. Inter-frame space as recorded in three in-vehicle traces: (i) the compact SUV Dacia Duster, (i) an ADAS system and (jii) the Hyundai Sonata

from [1].

was demonstrated by many works, e.g., in [2], [3], and [4],
which proved that vehicles are extremely vulnerable to cyber
attacks. Because of this, manufacturers need to carefully
develop and implement proper security mechanisms on forth-
coming cars, as cyber attacks can easily lead to catastrophic
situations. In addition to the preventive measures, e.g., cryp-
tographic authentication which was commonly proposed in
the literature [5], vehicles should be capable to monitor their
subsystems and detect potential attacks. Within this scope,
Intrusion Detection Systems (IDS) offer an additional protec-
tion layer that strengthens the vehicles security architectures.

Overview of contribution. While there are many recent
works focusing on the design of in-vehicle intrusion detection
systems (briefly surveyed by us in the following section),
most of these works evaluate the performance of these sys-
tems on regular computers. While this is fine for assessing
the detection rates, it is not really effective in assessing their
behavior on real-world in-vehicle ECUs. This is especially
problematic as in-vehicle controllers have to cope with real-
time delays. To get a more accurate image, in Figure 1,
we depict the delays between consecutive frames, i.e., the
inter-frame space (IFS), as recorded in the three in-vehicle
traces that we use in our experiments: the compact SUV Dacia
Duster (i), an Advanced Driver-assistance Systems (ADAS)
from a high-end sedan (ii) from which we collected data and
a Hyundai Sonata from [1] (iii) which we keep as a reference
in our experiments. Notably, in all three cases the IFS is
generally around 200 ws. But in the worst case, the IFS can
be as low as 3 recessive bits, i.e., 6 ws on a 500 kbps CAN
bus. The IDS has to cope with such small delays and be fast
enough in order to be effective for real world needs. Timing
is not the only constraint of the problem since the IDS must
also fit in the controller memory and it may also need to be
updated to learn new attacks in a similar manner to anti-virus
software, etc.

For this purpose, in our work, we test the performance
of automotive-grade controllers and compare them with
Android-based devices such as car head units, in the context
of detecting intrusions with machine-learning algorithms.
Specifically, our work accounts for the following obvious
setups that can be deployed inside a vehicle:

1) IDS deployed on the Android capable devices. This
setup is outlined in Figure 2 (i). There are two
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potential variations. First, the IDS can be deployed
on an Android head unit which is already a com-
mon component in modern vehicles. Besides exhibit-
ing increased computational resources, these units are
also equipped with 5G communication which can be
used for remote diagnosis (possibly via cloud-based
services, which can be used to enhance even further
the intrusion detection mechanism inside vehicles by
more demanding algorithms and large data pools). Sec-
ond, the IDS can be deployed on the user device, e.g.,
a smartphone, that collects CAN bus data by using
WiFi connectivity to the OBD port as also outlined in
Figure 2 (i). This would allow similar capabilities to the
case of Android head units. However, there are addi-
tional advantages since users may easily change their
smartphone thus benefiting from increased computa-
tional and communication capabilities over the years
(changing the Android head unit is less convenient).
Also, this may open room for third-party software
that may be published in Android application stores
and may be aquired by users similar to existing anti-
virus software. An immediate disadvantage however is
that Android head units or smartphones may become
more easily corrupted than in-vehicle controllers. For
example, the authors of [6] performed some attack
experiments on real vehicles by repackaging Android
commercial apps. Another demonstration of possible
attacks on Android devices is made in [7], in which
an Android infotainment unit is hacked and enables
attackers to inject messages on the CAN bus. Further,
applications vulnerabilities are discussed in [8] and [9].
Another possible disadvantage in implementing IDS
on Android devices is that Android smartphones are
not directly connected to the CAN bus and wireless
communication may induce additional delays (fortu-
nately, these delays may not be so significant but this
depends on the interface used for data collection, as we
show later in the experiments). Using smartphones may
also turn into an advantage from a security perspective,
since the smartphone is not directly linked to the CAN
bus and wireless connectivity to the bus may be imple-
mented in a read-only fashion. Thus, a compromised
phone will not be able to cause attacks on the bus.
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TABLE 1. Brief comparison between Android devices and in-vehicle ECUs (technical characteristics refer to devices in our experiments).

[ [ Pros

[ Cons

- high memory resources: 2-16 GB RAM
- high clock speeds 1-2 GHz
- more cores (4-8)
- internet/cloud connectivity

Android devices

- easier to compromise by malicious apps
- real-time behavior harder to predict: less accurate CAN timestamps
- costly calls through JNI
- possible issues with serial/CAN communication

- harder to compromise
- real-time behavior
- locally available on each ECU

In-vehicle ECUs

- lower clock speeds: 200-400 MHz
- less cores (1-3)
- lower memory resources: 1-16 MB RAM

Smartphone

N (09)
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FIGURE 2. The two addressed scenarios for intrusion detection.

2) IDS deployed on in-vehicle controllers. This is the
basic setup depicted in Figure 2 (ii) in which the
IDS is deployed in the usual way on one (or sev-
eral) ECUs inside the vehicle. The main drawback of
this approach is that in-vehicle controllers may not
have extensive computational resources, nor the com-
munication capabilities or outside connectivity, e.g.,
to garner cloud-based support. On the positive side, in-
vehicle controllers should be harder to compromise and
will exhibit a much more controlled real-time behavior.
Ideally, the IDS should be deployed on each in-vehicle
controller but this is rather debatable due to obvious
computational and memory limitations as we discuss in
the experimental section. Clearly, in-vehicle networks
are heterogeneous and we cannot expect all devices to
cope with such demands.

In the light of these scenarios, our work tries to bring a
clearer image on the advantages and disadvantages for each
of the approaches, i.e., from the more rigid, less corruptible,
in-vehicle ECUs to the more flexible, perhaps less secure,
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TABLE 2. Analyzed binary classifiers.

Abbreviation | Python scikit-learn Function
LR LogisticRegression
LDA LinearDiscriminantAnalysis
kNN KNeighborsClassifier
NB GaussianNB
SVM LinearSVC
MLP MLPClassifier
CART DecisionTreeClassifier
AB AdaBoostClassifier
GB GradientBoostingClassifier
BC BaggingClassifier
ET ExtraTreesClassifier
RFC RandomForestClassifier

Android platforms that may benefit from remote connectivity
and increased computational power. A summary of the brief
comparison between in-vehicle ECUs and Android units is
given in Table 1. As a collateral contribution, though not
necessary the main focus of our work, we also evaluate the
efficiency of several machine-learning algorithms in detect-
ing intrusions. Table 2 summarizes the binary classifiers that
we use in our current work, the achieved performances will be
presented in the next sections. Our contributions are fourfold:

1) we design a two-stage IDS in which message arrival
time is used in the first stage to detect replay and
DoS attacks, then machine-learning algorithms are
employed in the second stage to detect frame manip-
ulations caused by fuzzing attacks,

2) we provide specific architectures for two possible
deployments, showing the integration of the IDS both
on Android devices (with the use of JNI) as well as
on embedded development boards (in an AUTOSAR
compliant architecture),

3) we collect CAN bus data from real-world vehicles,
including CAN-FD data from an ADAS system, aug-
ment it with adversarial actions and evaluate twelve
classifiers, out of which four are deployed in our exper-
imental setup,

4) we provide computational results regarding the offline
and online IDS performance on Android devices, cloud
VMs and three representative automotive-grade micro-
controllers, as well as memory requirements on the
latter due to the stringent constraints on such platforms.

The rest of the paper is organized as follows. In Section II

we provide some background on CAN buses and discuss
related work. Section III presents the utilized in-vehicle
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traces, the devices that we used in our experiments and the
adversary model. In Section IV we present our experimen-
tal testbed. Section V places the binary classifiers in the
previously outlined setups and evaluates their performances.
Finally, Section VI holds the conclusion of our work and
section VI contains the list of acronyms.

Il. BACKGROUND AND RELATED WORK

In this section we discuss some background on CAN buses
and then we proceed to a brief survey on existing related work
for intrusion detection on CAN.

A. BRIEF INTRO ON CAN BUSES

The CAN protocol specification was standardized by Interna-
tional Organization for Standardization (ISO), which released
the ISO 11898 standard. Data link layer and physical sig-
nalling are part of ISO 11898-1 document [10] while the ISO
11898-2 document [11] is dedicated for high-speed medium
access unit. Physically, the CAN bus is designed as a two-
wire (CAN-High, CAN-Low) bus connected by two 120 Ohm
resistors at the end. The CAN-High and CAN-Low lines carry
two complementary signals thus employing differential sig-
naling. The structure of the central communication element
for CAN and its extension proposed by BOSCH, i.e., the
CAN and CAN-FD (CAN with Flexible Data-Rate) frame is
depicted in Figure 3.

In what follows, we detail the most important parts of the
frame structure and highlight the main differences between
CAN and CAN-FD. In both cases, a dominant SOF bit and
a recessive EOF bit marks the beginning and the end of the
frame. The identifier of the frame (11 bits for standard format
or 29 bits for extended format) along the RTR bit for CAN
or RRS for CAN-FD establishes the arbitration field, which
assures the collision avoidance mechanism (lower IDs values
have a higher priority). We pay attention on the standard
format since our CAN collected traffic does not contain any
frame in the extended format.

CAN provides bit rates of up to 1 Mbit/s and encloses up
to 8 bytes in the data field while the CAN-FD enables faster
communication speeds, it usually employs from 2 to 5 Mbit/s,
but there are transceivers that support up to 8 Mbit/s, while
the data field carries of up to 64 bytes. Another relevant part
from the control field is the DLC since it reveals the number
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of bytes that are carried by the CAN or CAN-FD frame.
A 15-bit CRC is employed for verifying the correctness of
the frame content. Finally, the correct reception of the frame
is enabled by the receiver which overwrites a dominant value
in the ACK slot. The most recent step in CAN evolution is
CAN-XL which enables payloads up to 2048 bytes and com-
munication speeds of up to 10 Mbit/s remaining compatible
with CAN-FD for mixed networks.

B. RELATED WORK

In the recent years, an extremely large number of attacks
were reported, e.g. [12] and [13], indicating that the current
security mechanisms deployed by vehicle manufacturers are
often not appropriate.

Surveys on in-vehicle network attacks and countermea-
sures can be found in several works, e.g., [14], [15], and
[16]. Many solutions were considered, ranging from the use
of cryptographic security up to physical layer protection [5]
and the industry was not slow in responding with security
standards that are part of the AUTomotive Open System
ARchitecture (AUTOSAR). AUTOSAR defined the Secure
Onboard Communication concept [17] which makes use of
Message Authentication Codes (MAC) and freshness values
to ensure the integrity and authenticity of the CAN messages.
A complementary layer for cryptographic security is the use
of an IDS which monitors the CAN network for malicious
traffic. Recently, IDS design is among the most commonly
debated topic and generates a considerable interest for the
research community. In this respect, several relevant works
were proposed, which we now discuss. However, most of
these studies focus only on the detection accuracy and do
not take into account the computational constraints which are
crucial in the context of automotive embedded platforms -
these constraints are the main focus in our work. In what
follows we survey more than twenty-five papers related to
the development of in-vehicle IDS, but only a small amount
of them, namely [18], [19], [20], [21] and [22] are using
embedded development boards. Also, a comparison between
in-vehicle controllers and Android units that are now com-
mon in cars is missing from related works.

In [18] an IDS based on remote frames is presented. The
authors measure the time-interval between request frames
(also known as remote frames) and response frames (also
known as data frames) and show how adversarial frames
cause offset variations that do not occur in a free attack sce-
nario. The use of Bloom filters was explored in [19] in order
to detect malicious activity on the CAN bus. The proposed
detection technique is based on a training stage that examines
the message periodicity in order to detect replay attacks and
the content for data field in order to detect injections with
random data. The authors show that the real-time classifi-
cation is time-memory efficient and obtain good detection
results. A graph-based IDS that models the CAN traffic is
considered in [23]. Other lines of works employ entropy
characteristics [24], [25] in order to distinguish between
normal or abnormal CAN bus activity. Other approaches
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include the use of Markov Model [26], decision trees [27] or
finite-state automatons [28]. A number of studies found that
hardware measurements can be used for intrusion detection.
This accounts for the use of voltage thresholds [29], clock-
skews [20] or signal characteristics [30].

Significant attention is also given to machine learning
based approaches. A hierarchical taxonomy on these method-
ologies can be found in [31]. The authors from [32] provide
a comparative view regarding the use of machine learning
approaches for CAN IDSs. For example, in [33], the authors
evaluate the performance of the K-Nearest Neighbour and
Support Vector Machine algorithms against Denial of Ser-
vice (DoS) and fuzzy attacks. The results obtained by them
exhibit a good detection accuracy of over 90%. A poten-
tial weakness of the work in [33] is not considering CAN
messages frequency in the training phase (note that CAN
bus traffic is always periodic) which leads to the inability
of detecting replay attacks. In [34], a deep neural network
is employed experiments are performed on CAN traffic gen-
erated with a software tool, i.e. OCTANE [35] but not on
real-world datasets. A recurrent neural network is employed
in [36] where the authors prove the efficiency of the pro-
posed method in detecting malicious frames on the CAN
bus. The idea to convert the CAN frames into images in
order to build a neural network based IDS was explored
by [37]. A specification-based IDS using supervised learning
and CAN timing is presented in [38]. The authors of [39]
proposed a self-supervised method for intrusion detection
which relies on the use of noised pseudo normal data. The
detection system uses two deep-learning models, one is used
to generate pseudo normal traffic data and the other one is
used to detect anomalies. To detect variant attacks, the authors
of [40] proposed an intrusion detection system based on the
domain adversarial training of neural networks. An intrusion
prevention system that detects and discards attack frames
on CAN is presented in [21]. The proposed mechanism was
implemented and validated on a Raspberry Pi, using the
one-class support vector machine and the isolation forest
algorithms for intrusion detection. The authors of [22] present
a method to detect DoS attacks using the similarity of sliding
windows. This method improves prior approaches that detect
DoS attacks based on the entropy in a sliding window. For a
broader image, recent surveys on intrusion detection mecha-
nisms for vehicular networks can be found in [41] and [42].

Ill. EXPERIMENTAL TRACES, DEVICES AND ADVERSARY
MODEL

In this section we describe the in-vehicle traces and experi-
mental devices that we use in our evaluation. Also, we discuss
the adversarial behavior that our intrusion detection system
accounts for.

A. COLLECTED IN-VEHICLE TRACES
In our analysis we used two real-world datasets collected by
us and a data-set from [1] which we use as a reference.
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FIGURE 4. Dacia Duster SUV from our experiments.

The collection of the CAN dataset from the cars was
performed using a Vector VN1630 USB-to-CAN interface.
We have implemented a Windows application using Vector
XL Driver Library to interface with the VN1630 hardware.
For the first CAN trace, we connected the VN1630 to the
Dacia Duster in-vehicle OBD port and extracted the CAN
bus traffic. Our second dataset was extracted directly from
a private CAN bus on which automotive radar ECUs were
connected, i.e., ADAS systems (Advanced Driver-Assistance
Systems). Using data from such a system is relevant since
future autonomous vehicles will directly depend on it, not
to mention the increased help these system have to offer to
regular drivers.

The CAN logging procedure is graphically depicted in
Figure 9 (i). Several details on these datasets are summarized
as follows:

1) the first data set comes from a Dacia Duster (Figure 4)
which is a compact sport utility vehicle (SUV) which
we see as representative for mid-range cars. The col-
lected data is more limited in terms of the number of
IDs, only 12 IDs are visible on the OBD port, but it
is almost identical to the rest in terms of delays and
entropy.

2) the second dataset comes from a high throughput
CAN-FD network that accommodates ADAS systems,
e.g., vehicle radars used to detect vehicles and pedes-
trians. This type of traffic is representative for mid to
high-end cars that posses modern equipment needed
for complex tasks such as autonomous driving. This
dataset is more complex containing more than 80 IDs
and frames of up to 512 bits. The communication layer
is the newer CAN-FD.

We also use the dataset from [1] which was recorded in a
Hyundai Sonata and we keep it as a reference to compare our
results with existing works. The trace contains 27 IDs making
it more similar to our first dataset and less complex than the
second.

A few words on the traces based on the depictions from
Figure 5 are necessary. This figure depicts some statistics for
one ID in each trace. We notice that in all traces the content
of the datafield shows clear patterns which would make it
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FIGURE 5. Example for the values of the data-field (left), cycle time
(right-up) and histogram distribution of the cycle time (right-down) for an
ID collected in the compact SUV Dacia Duster (i), ADAS systems (ii) and
the Hyundai Sonata from [1] (jii).

easy to detect certain attacks, e.g., randomized injection. For
the first trace, there is also a limited set of identifiers which
show more randomized patterns. The shortest cycle time for
the IDs is at 10 ms in all traces. Interestingly, in the first
trace the ID at 10 ms has a bimodal distribution of the arrival
time. The variations however are generally of 1-2 ms at most
in all traces. The CAN-FD trace, while carrying larger data
payloads, does not exhibit more variability than the regular
CAN traces. This suggests that the same mechanism for
detecting intrusions will hold for all traces.

B. DEVICES FROM OUR SETUP
The first category of devices that we used in our setup com-
prises the Android-based devices. We used a PNI A8020 head
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unit whose production started in 2017 and a more recent one,
Erisin ES8791V, released in 2019. Due to their high usage and
capabilities, smartphones were also considered in our setup.
Consequently, we chose to work with a Samsung A6, a Sam-
sung S8 and a Samsung Note10+-. In addition to smartphones,
we also included a tablet in our work, namely the Samsung
Galaxy Tab S7.

The second category of devices that we worked with con-
sists of automotive-grade microcontrollers. We used from
Infineon two devices from the Aurix 32-bit microcontrollers
family which are meant especially for automotive and indus-
trial applications. The first microcontroller is a TC224,
belonging to the 1st generation of AURIX, while the other
microcontroller is a Tricore TC397, which is part of the 2nd
generation of AURIX. From the low-end sector, we chose an
S12XEP microcontroller which is part of S12XE family that
provides 16-bit arhitecture microcontrollers having Hybrid
Electric Vehicle (HEV), Tire Pressure Monitoring Systems
(TPMS) or Motorcycle Engine Control Unit (ECU) as target
applications in the automotive sector. All devices that we
used in our experiments and their specifications are listed in
Table 3.

C. ADVERSARY MODEL

The following three types of attacks have been commonly
considered against CAN nodes. Fuzzing attacks in which an
attacker modifies the data-field of the genuine CAN frames
and transmits the malicious frames on the bus. The injected
data field is filled with random values. Replay attacks in
which genuine CAN frames are intercepted by an attacker
and retransmitted on the bus at a later time. In this scenario,

VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

IEEE Access

TABLE 3. In-vehicle devices used in our evaluation.

’ ‘ Device Prod. Android CPU Memory Connectivity
Year
Head Unit PNI A8020 2017 7.1 Quad-core 1.63 GHz Cortex A7 8 GB, 1 GB RAM WiFi, Bluetooth, USB
Head Unit Erisin ES8791V 2019 10.0 Rockchips PX5 1512 MHz Cortex A53 64 GB, 4 GB RAM WiFi, Bluetooth, USB
Samsung A6 2018 8.0 Octa-core 1.6 GHz Cortex-A53 32 GB, 3 GB RAM WiFi, Bluetooth, NFC, USB
8 Octa-core (4x2.3 GHz Mongoose M2 64 GB. 4 GB RAM WiFi. Bl h. NFC. USB
.é Samsung S8 2017 7.0 & 4x1.7 GHz Cortex-A53) s iFi, Bluetooth, )
= Octa-core (2x2.73 GHz Mongoose M4
:g Samsung Note10+ 2017 9.0 2x2.4 GHz Cortex-A75 & 4x1.9 GHz 256 GB, 12 GB RAM 'WiFi, Bluetooth, NFC, USB
St
= Cortex-A55)
é Octa-core (1x3.09 GHz Kryo 585 &
Samsung Galaxy Tab S7 2020 8.0 3x2.42 GHz Kryo 585 & 4x1.8 GHz 256 GB, 8 GB RAM WiFi, Bluetooth, USB
Kryo 585)
Infincon Tricore TC224 2015 N/A Single-core 133 MHz TriCore 1 MB, 96 KB RAM CAN2.0, CAN-FD, Flexray,
- Ethernet, etc.
O | Infineon Tricore TC397 2018 N/A Hexa-core 300 MHz TriCore 16 MB, 2528 KB RAM CAN 2.0, CAN'FD. Flexray.
= Ethernet, etc.
SI12XE 2006 N/A Single-core 50 MHz S12X 1 MB, 64 KB RAM CAN 2.0, LIN, SPI

as malicious frames and genuine frames are identical, the only
visible aspect on the bus is an increased frequency of frames
with the corresponding IDs which eventually leads to a dif-
ferent inter-frame delay for the respective ID. And finally,
flooding attacks in which CAN frames with low valued IDs
(that are not part of the dataset) and random data are injected
on the CAN bus, causing a Denial of Service (DoS).

From these three types of attack, the most involving for
the machine learning algorithms is the fuzzing attack since
it requires analysis of the complete frame. As for DoS and
replay attacks, these may be detected by a simple inspec-
tion of the arrival time and frame rate on the bus. Notably,
in most cars the bus is kept at around 50% busload or less
and all frames have fixed periodicity. When the frame rate
exceeds the expected threshold a DoS or replay attacks can
be signaled without the need of more expensive machine
learning algorithms. This is suggested in Figure 6 which
presents the two-stage intrusion detection mechanism that we
envision. The first stage simply checks for known IDs and
the correctness of the arrival time, possibly by performing
some additional skew corrections to avoid synchronization
issues, and only then the second stage enters to detect anoma-
lies based on the machine learning classifiers. Consequently,
we use the CAN IDs and timestamps as features in the first
stage and the CAN IDs and data fields as features for the
binary classifiers employed in the second stage. Figure 7
suggests the feature extraction from a CAN frame and the
allocation of the features to the two-stage IDS.

In addition to our own datasets, we also executed our
algorithms on datasets from related work [1] to validate them
and have a common denominator with other related works,
e.g. [36] and [43]. In this way, a more accurate comparison
of the results is possible. Although essentially the same types
of attacks that we previously mentioned are evaluated, there
are small differences in how they are implemented or named.
For this, we first clarify how the attacks used in [1] differ.
Han et. al. focused on three types of attacks: flooding, fuzzy,
and malfunction. The first type of attack consists of injecting
messages with ID 0 x 00, which based on the CAN specifica-
tion, is the ID with the highest priority. The consequence of
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this attack is a DoS, i.e., the malicious ECU will occupy the
resources allocated to the CAN bus, limiting the communi-
cation among the other ECUs. The data field of the injected
messages is always set to zero. Departing from [1], in our
work, the flooding attack consists of frames with IDs whose
values are less than the genuine ID with the lowest value from
the dataset and the data field is filled with random values. The
effect is similar, although the attack is more difficult to detect
and more realistic since, with our adversary model, a DoS is
not caused by ID 0 x 00 alone. The second type of attack,
i.e. fuzzy attack, consists of sending frames with random IDs
and data. This type of attack will be much easier to detect
than ours since most of the random IDs will not be part of
the legitimate trace (for this, machine learning algorithms are
not needed since unknown IDs are easy to detect by a look-
up-table). Since this attack will be immediately detected by
filtering, we do not reproduce it in our dataset as it will be
trivial to detect by the first stage of the intrusion detecting
mechanism which checks that IDs belong to genuine ECUs.
Note that in real-world scenarios, the IDs are indeed known
by manufacturers at the time of designing the in-vehicle
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FIGURE 8. CANoe simulation setup.

components. The third and last attack, i.e. malfunction attack,
is described by the authors of [1] as the attack in which a
malicious ECU injects frames with IDs, which are part of the
ID list for the respective network, and random data. This type
of attack is similar with our fuzzing attack.

IV. SETUP FOR THE EXPERIMENTS

In this section we present the setup that we use for the
synthetic analysis (off-line) of the attack traces as well as for
the on-line analysis with physical devices plugged to the CAN
bus to perform the attack detection in real-time.

A. SETUP FOR OFF-LINE ANALYSIS

To make the attacks realistic, we use the CANoe environment
to mount attacks on the frames from the genuine datasets.
This working scenario has also been considered by other
works, e.g. [44]. For this, we configured inside the environ-
ment a CAN node to replay the genuine dataset and another
node to inject malicious frames. While the first node is
a predefined replay block, for the second node we imple-
mented the logic of the previously mentioned three attacks
in CAPL (Communication Access Programming Language).
Our CANoe simulation setup is depicted in Figure 8 and
the attacks injection procedure in Figure 9 (ii). The resulting
traces, which include both genuine and attack frames, were
used as inputs for the IDS algorithms in the training and
testing phase. The existing datasets from [1] are taken for
comparison in the format provided by the authors and was
not run by us inside the CANoe environment.

B. SETUP FOR ON-LINE ANALYSIS

For the on-line analysis we aimed to connect the Android
units to the CAN bus in order to monitor the CAN bus traffic.
We investigated two options to achieve this with the Android
head unit and with Android smartphones respectively.

We first used an USB to CAN adapter to connect the
Android head unit to the CAN bus. The USB to CAN adapter!
is commercialized by Seeed Technology and supports both
CAN 2.0A and CAN 2.0B with baudrates ranging from

1 https://www.seeedstudio.com/USB-CAN-Analyzer-p-2888.html
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5 kbit/s to 1 Mbit/s. A software application is available for
Windows and Linux which may be used to work with the
adapter. In addition, a document that describes the UART
protocol and the way in which the device can be configured
and controlled is available on Github.? Therefore, as our
target was to use it on the Android head unit, we implemented
our own control code in Android Studio. To enable the UART
communication on Android, we have used a library also
hosted on Github [45].

As a second option, we used a Raspberry Pi module to
wirelessly route the CAN messages to the Android head unit.
This is the scenario in which the Raspberry Pi is connected
to the CAN bus using the OBD port and forwards all the
CAN messages from the bus to the head unit or smart-
phone via WiFi. The Raspberry Pi device does not feature
an embedded CAN transceiver, therefore we needed to use
an external one. We chose to work with MCP2518FD click
board® from MikroElektronika which provides a complete
CAN and CAN-FD solution. The board is equipped with the
MCP2518FD CAN controller, which has SPI interface, and
the ATA6563 transceiver. Both integrated circuits are pro-
duced by Microchip. The MCP2518FD click board ensures
CAN communication speeds up to 5 Mbps and can run in one
of the followings operating modes: normal CAN 2.0, normal
CAN FD, restricted operation, sleep, listen only, internal and
external loop back modes and configuration. The CAN click
board is connected to the Raspberry Pi via the Pi 3 Click
shield, which is designed by MikroElektronika to support a
wide range of click boards.

For both scenarios we used the CANoe environment and a
VN1630 hardware to replay the attack traces on the CAN bus.
The replay procedure is ilustrated in Figure 9 (iii). The frames
were monitored, processed and classified in genuine or attack
frames by the Android smartphone in one scenario or by the
head unit in the other scenario. The results are discussed in
the next section.

Our experimental setup with all components that we used
to deploy the two scenarios is presented in Figure 10. We used
a Mastech power supply for the PNI head unit, a laptop to
run CANoe Application, a VN1630 hardware to connect the
laptop to the CAN bus, a CAN decoder to enable the head
unit to communicate on the CAN bus, a Raspberry Pi to route
the CAN traffic from the CAN bus to the smarthone and
eventually the Samsung A6 and PNI head unit which ran the
IDS procedures.

The four classifiers that we later used in our on-line
analysis, i.e. AB, CART, ET and RFC, were trained in
Python and the generated code was converted to C code
using sklearn-porter library [46], so that it becomes easy
to adapt and use for Android devices and microcontrollers.
On the Android devices, we used the Native Development Kit
(NDK) which allows developers to use C and C++ code with
Android applications. Therefore, we compiled the C code of

2https ://github.com/SeeedDocument/USB-CAN-Analyzer
3 https://www.mikroe.com/mcp2518fd-click
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FIGURE 10. Experimental setup for the intrusion detection systems (IDS).

the classifiers into a native library which was then included
in our Android Application Package (APK). The connec-
tion between the Java code and C code is made using the
Java Native Interface (JNI) framework. We built an Android
application which receives CAN messages via WiFi (from
Raspberry Pi) or USB (from CAN decoder) and using JNI
calls accesses the four machine learning (ML) algorithms and
classfies the received CAN messages into genuine or attack
frames. Figure 11 depicts the classic Android architecture
extended with the modules that we developed (highlighted
with yellow).

With small adaptations, the C code was usable for all
microcontrollers, with few exceptions where the compiled
code of some algorithms did not fit into available memory of
devices. From our perspective, in classic AUTOSAR ECUs,
the machine learning algorithms should be developed as
AUTOSAR software components, being part of the Appli-
cation Layer. The AUTOSAR community already released
some specifications regarding vehicle onboard IDS [47], [48].
According to the AUTOSAR requirements [48], an onboard
IDS consists of Security Sensors, Security Event Memory
(Sem), Intrusion Detection System Manager (IdsM) and
Intrusion Detection System Reporter (IdsR). Briefly, security
sensors are modules used to detect security events which are
then reported to IdsM. The IdsM is a module which manages
the received security events by passing them through a filter
chain. If the events pass all filters, they will be classified
as Qualified Security Events (QEVs). These events can be
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locally stored in the Security Event Memory or transmitted to
the IdsR which collects the QEVs from multiple ECUs and
can provide the data to Security Operation Centers for fur-
ther processing. Currently there is no specification for IdsR
provided by AUTOSAR. In our case, we consider that our
intrusion detection mechanism should be categorized as an
advance security sensor and its deployment should be done on
the application layer of the AUTOSAR architecture. This is
suggested in Figure 12. The ML module would receive CAN
frames from the communication (COM) stack and would
report security events to IdsM if intrusions are detected.

V. EXPERIMENTAL RESULTS

In this section we discuss experimental results both from
the off-line and on-line analysis. We also focus on compu-
tational and memory requirements and particularly highlight
the importance of delays.

A. OFF-LINE EVALUATION

In order to compare the performance of the binary classifier
candidates and decide which of them is suitable to be embed-
ded in a vehicular CAN bus IDS, we used regular metrics for
machine-learning algorithms.
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Each CAN frame that is classified in genuine or intrusion
frame by the machine learning algorithms is categorized into
one of the following four groups based on the correctness of
the classification:

o TP — “true positive”, when an intrusion frame is

correctly classified as intrusion;

« FP — “false positive”’, when a genuine frame is

incorrectly classified as intrusion;

o TN — “true negative”, when a genuine frames is cor-

rectly classified as genuine;

o FN - “false negative”’, when an intrusion frame is incor-

rectly classified as genuine;

Some of the most common performance metrics used in
machine learning classification are the accuracy, precision,
recall and specificity. The first one, also called positive pre-
dictive value, is the fraction of intrusion frames correctly
classified as intrusions among all the frames reported as
intrusions:

TP
1P + FP

The recall is defined as the overall number of true intrusion
frames divided by the overall number of frames classified as
intrusions:

precision =

TP
TP + FN

Specificity, also called true negative rate, indicates the
proportion of genuine frames that are correctly reported as

genuine. Therefore, the definition of specificity is formalized
as:

recall =

TN
TN + FP
The accuracy score is a metric that defines the ratio of
correctly classified frames to the total number of frames
processed by the machine learning algorithms:
TP + TN
TP+ TN + FP + FN
We first ran our machine learning algorithms on the Sur-
vival Analysis datasets from [1]. These datasets were logged

specificity =

accuracy =
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FIGURE 13. Frame cycle time as recorded on: (i) original attack trace,
(i) WiFi bridge, (iii) CAN decoder, (iv) drifts on WiFi bridge, (v) drifts on
CAN decoder, (vi) drifts histogram on WiFi bridge and (vii) drifts
histogram on CAN decoder.

from three different vehicles, i.e. Hyundai YF Sonata, KIA
Soul, and CHEVROLET Spark. Then, the authors of [1]
created for each vehicle three different traces, each of them
containing one of the three attacks that they defined in their
work, i.e. flooding, fuzzy and malfunction attack. In our off-
line analysis, we evaluated the datasets which contained the
fuzzing and malfunction attacks on the Hyundai Sonata CAN
traffic. Both datasets contain approximately 60 seconds of
CAN traffic. We trained the algorithms on the CAN frames
from the first half of the datasets (=30 seconds) while the
second half of the datasets was used for the evaluation phase.

The results are presented in Table 4 and Table 5. The
performance of the algorithms was almost perfect in detecting
fuzzing attacks. The recall was the only metric whose value
was 0.99 for half of the classifiers, while the other metrics
values were 1.00 for all classifiers. In case of malfunction
attacks, the results decreased a bit, especially in precision.
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TABLE 4. Survival analysis dataset (HYUNDAI YF Sonata) - Fuzzing attack.

Algorithm [ Accuracy [ Precision [ Recall [ Specificity ]

LR 1.00 1.00 0.99 1.00
LDA 1.00 1.00 0.99 1.00
KNN 1.00 1.00 0.99 1.00
NB 1.00 1.00 0.99 1.00
SVM 1.00 1.00 0.99 1.00
MLP 1.00 1.00 1.00 1.00
CART 1.00 1.00 1.00 1.00
AB 1.00 1.00 0.99 1.00
GB 1.00 1.00 1.00 1.00
BC 1.00 1.00 1.00 1.00
ET 1.00 1.00 1.00 1.00
RFC 1.00 1.00 1.00 1.00

TABLE 5. Survival analysis dataset (HYUNDAI YF Sonata) - Malfunction
attack.

l Algorithm [ Accuracy [ Precision [ Recall [ Specificity ]
LR 0.98 0.92 1.00 0.98
LDA 0.97 0.87 1.00 0.97
KNN 0.98 0.92 1.00 0.98
NB 0.98 0.92 1.00 0.98
SVM 0.98 0.89 1.00 0.97
MLP 0.98 0.92 1.00 0.98
CART 0.98 0.92 1.00 0.98
AB 0.98 0.92 1.00 0.98
GB 0.98 0.92 1.00 0.98
BC 0.98 0.92 1.00 0.98
ET 0.98 0.92 1.00 0.98
RFC 0.98 0.92 1.00 0.98

However, the overall performance is still pretty good, i.e.
accuracy and specificity between 0.97 and 0.98, precision
of 0.92 for the most classifiers, while the recall was perfect
for all algorithms. When compared to the results obtained
in [36] on the Hyundai Sonata datasets, we achieved similar
scores in terms of accuracy and recall (with differences of
at most 0.01) for fuzzing attacks. In case of malfunction
attacks, we achieved the same recall score, i.e. 1.00, but a
lower accuracy (i.e. with 0.02 lower in case of the most
algorithms and with 0.03 lower in case of LDA) compared to
the results obtained in [36]. Next, we ran our algorithms on
the datasets that we collected in our work. We only considered
the fuzzing attack for the off-line analysis, since machine
learning algorithms are part of stage 2 of our IDS. The other
attacks, flooding and replay, are handled in the 1st stage of
our IDS and were considered in the on-line evaluation that
will be presented later. From the Duster dataset, we used the
first 20% of the frames (i.e. the first 60 seconds from the
trace) for training the classifiers and the rest of the frames
(A240 seconds) were considered in the evaluation phase.
In case of the ADAS Systems dataset, we trained the algo-
rithms on the first half of the traffic (=150 seconds) while
the second half of the traffic was included in the evaluation
set. The performance results for Duster dataset are listed in
Table 6. The accuracy is more than 0.95 for all classifiers,
except GB and BC, which have an accuracy of 0.89. These
two algorithms performed poor also in terms of precision,
with a score of 0.64, but they also ranked last in terms of
specificity. The rest of the ten algorithms ranged between
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TABLE 6. Duster dataset - Fuzzing attack.

Algorithm [ Accuracy [ Precision [ Recall Specificity
LR 0.98 0.95 0.94 0.99
LDA 0.95 0.89 0.86 0.97
KNN 0.99 0.96 1.00 0.99
NB 0.96 0.90 0.93 0.97
SVM 0.98 0.96 0.92 0.99
MLP 0.99 0.95 1.00 0.99
CART 0.99 0.96 1.00 0.99
AB 0.99 0.96 1.00 0.99
GB 0.89 0.64 1.00 0.86
BC 0.89 0.64 1.00 0.86
ET 0.99 0.96 1.00 0.99
RFC 0.99 0.96 1.00 0.99
TABLE 7. ADAS systems dataset - Fuzzing attack.
Algorithm [ Accuracy [ Precision [ Recall [ Specificity
LR 0.94 0.89 0.90 0.96
LDA 0.96 0.96 0.89 0.99
KNN 0.97 0.97 0.93 0.99
NB 0.77 0.55 0.81 0.76
SVM 0.94 0.89 0.89 0.96
MLP 0.98 0.96 0.97 0.99
CART 0.90 0.73 0.97 0.87
AB 0.98 0.95 0.97 0.98
GB 0.96 0.90 0.97 0.96
BC 0.89 0.72 0.97 0.87
ET 0.97 0.91 0.97 0.97
RFC 0.97 0.92 0.97 0.97

0.89 and 0.96 in precision and between 0.97 and 0.99 in
specificity. The last dataset that we assessed was the ADAS
Systems dataset which contains CAN-FD traffic. The results
are presented in Table 7. Perhaps not surprising, as this dataset
is the most complex from the ones that we evaluated, the
classifiers recorded the lowest performance results on this
trace. Except for the NB, which did not performed well on
this dataset, for the rest of the algorithms the accuracy varied
between 0.89 and 0.98, precision between 0.72 and 0.97 and
specificity between 0.87 and 0.99.

The results from the off-line analysis prove better than the
ones obtained in the on-line analysis and this is due to the
fact that in the on-line evaluation variations of the timestamps
are possible due to frame overlaps on the bus. This points
out that the off-line analysis presented in most papers may
provide more optimistic results compared to the real-world
evaluation.

B. ON-LINE EVALUATION
One specific problem in the on-line evaluation is that the
devices which we used for recording CAN bus traffic, have
their own imperfections which influenced the performance
of the IDS. We note that the timestamps of the frames may
have slight variations according to the device. In particular,
the Raspberry Pi that we used over the WiFi bridge performed
excellent, offering almost identical timestamps to that from
the VN1630. The CAN decoder however did not perform very
well, giving poor accuracy for the recorded timestamps.
Figure 13 first shows frame cycle time as recorded on
(i) original attack trace, (ii) WiFi bridge, (iii) CAN decoder,
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TABLE 8. Duster dataset - Fuzzing and replay (WiFi dridge).

Att. type ‘ Algorithm ‘ Accuracy ‘ TN ‘ FP FN TP Precision Recall Specificity
AB 0.89 93757 15520 9 27274 0.64 1.00 0.86
fuzzin CART 0.89 93757 15520 27 27256 0.64 1.00 0.86
& ET 0.89 93757 15520 0 27283 0.64 1.00 0.86
RFC 0.89 93757 15520 1 27282 0.64 1.00 0.86
replay - 0.78 93757 15520 14939 12344 0.44 0.45 0.86
TABLE 9. ADAS systems dataset - Fuzzing and replay (WiFi bridge).
Att. type ‘ Algorithm ‘ Accuracy ‘ TN ‘ FP FN TP Precision Recall Specificity
AB 0.97 152634 4628 1386 37994 0.89 0.96 0.97
fuzzin CART 0.88 135256 22006 1066 38314 0.64 0.97 0.86
uzzing ET 0.96 150328 6934 1193 38187 0.85 0.97 0.96
RFC 0.96 150480 6782 1205 38175 0.85 0.97 0.96
replay - 0.90 154404 2858 16844 22536 0.89 0.57 0.98

then it depicts (iv) drifts on WiFi bridge, (v) drifts on CAN
decoder, (vi) drifts histogram on WiFi bridge and (vii) drifts
histogram on CAN decoder. The depiction is for a frame with
a cycle time of 10ms, in part (i) of the figure the legitimate
frames are depicted in blue and attack frames are in red (this
is a fuzzing attack where attack frames with random content
arrive at random time interval). It is obvious that the WiFi
bridge records almost identical timestamps compared to the
original attack trace. There are only several drifts of 10 ms
when the classification algorithm confused one legitimate
frame with an attack frame and thus the legitimate frame is
missing in that time slot. For the CAN decoder the timestamps
are no longer accurate, the histogram in part (vii) of the figure
shows that drifts of up to 2 ms are common. These drifts of
around 20% of the 10 ms frame cycle time may lead to false
positives in case of legitimate frames. This suggests that the
CAN decoder with the employed Android drivers from our
experiments is not a very good tool for implementing an IDS,
a reason for which we used a Raspberry Pi as a WiFi bridge
between the CAN bus and the Android devices. As shown in
Figure 13 (ii) the delays over WiFi bridge are nearly identical
to the original trace.

We ran the on-line evaluation using the first IDS scenario
with WiFi Bridge and a smartphone, using both the Duster
and ADAS systems datasets. For this, we connected the Sam-
sung A6 and the Raspberry Pi over WiFi. To ensure security,
a WPA2 (WiFi Protected Access II) connection was used,
which encrypts all packets with AES (Advanced Encryp-
tion Standard). The delays caused by the WiFi network,
i.e., by encrypting the traffic and retransmitting it, were too
small to affect the real-time performance. We evaluated four
algorithms, i.e., AB, CART, ET and RFC, on two types of
attacks (fuzzing and replay). We chose to work with these
four classifiers, since it was at hand to generate C code for
them using the sklearn-porter library. In the on-line evalua-
tion, we ran both stages of the proposed intrusion detection
algorithm, described in section III-C. Since the IDS has two
stages, we have to redefine the true and false positives as
TP = TP; + TP; and FP = FP; + FP; respectively since
a frame will be classified as an intrusion if it is marked so by
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any of the two IDS stages. The true and false negatives will be
the true and false negatives that pass the second stage which
means that none of the two stages reported them as intrusions
thus TN = TN; and FN = FNy respectively.

The results obtained on the Duster dataset are presented
in Table 8 and the results on the ADAS systems dataset in
Table 9. In case of Duster datasets, the detection performance
of the four algorithms was almost identical, i.e. accuracy of
0.89, precision of 0.64, recall of 1 and specificity of 0.86 in
detecting fuzzing attacks. The detection of replay and flood-
ing attacks is made only in stage 1, so it’s independent of what
algorithms are used in stage 2. Flooding attacks are trivial to
detect with the proposed approach since the legitimate IDs of
the network are known (this is always the case in the auto-
motive industry). For the replay attacks, the IDS performed
a score of 0.78 in terms of accuracy, 0.44 and 0.45 in terms
of precision and recall, and 0.86 in terms of specificity. The
performance results are better in case of the ADAS systems
datasets, the accuracy ranges from 0.88 to 0.97, precision
from 0.64 to 0.89, recall from 0.96 to 0.97 and specificity
from 0.86 to 0.97. The replay attacks were detected with an
accuracy of 0.90, a precision of 0.89, a recall of 0.57 and a
specificity of 0.98.

C. COMPUTATIONAL RESULTS

In addition to the detection performance evaluation, we also
assessed the proposed IDS mechanism in terms of runtime
speed and memory requirements on several Android devices
and three automotive-grade microcontrollers. It is well known
that controllers employed nowadays as automotive ECUs
have limited computational power and memory. On the other
hand, ECUs communicate in real time inside the in-vehicle
network, so the IDS algorithms have to be very efficient in
terms of execution speed. Computational time and memory
requirements are the main challenges in adopting IDS solu-
tions in the automotive world.

The first stage of our proposed IDS mechanism, which sim-
ply evaluates the arrival time and frame rate, is of no concerns
in terms of execution speed or memory consumption. There-
fore we focus our evaluation on the four selected machine
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TABLE 10. Infotainment Units - computational time for IDS algorithms
[us] - multiple JNI calls.

TABLE 12. Android devices - computational time for IDS algorithms [us] -
multiple JNI calls.

. . ADAS systems . . ADAS systems
Device ‘ Algorithm ‘ Duster (CAN) (CAN-FD) ‘ ’ Device ‘ Algorithm ‘ Duster (CAN) (CAN-FD)
AB 102.87 107.12 AB 60.25 62.69
CART 147 1793 ] CART 576 3.02
PNIA8020 ET 16.07 3577 Samsung A6 ET 797 13.56
RFC 1439 29.78 RFC 7.09 11.99
AB 78.87 84.01 AB 4240 4419
- CART 6.20 922 CART 544 596
Erisin ES8791V BT 305 6,04 Samsung S8 BT 672 12.90
RFC 7.90 13.97 RFC 7.10 10.90
AB 15.07 16.07
Samsung Note10+ CS¥T 1;‘5 %gg
TABLE 11. Infotainment Units - computational time for IDS algorithms REC 175 3755
[us] - one JNI call. AB 708 358
Samsung Tab S7 CART OZZ é 27
Device Algorithm Duster (CAN) ADAS systems o) E o2
(CAN-FD) RFC .02 1.94
AB 35.04 85.89
CART 0.59 2.12 . . . . .
PNI A8020 BT 333 1067 TABLE 13. Android devices - computational time for IDS algorithms [us] -
REC 337 790 one JNI call.
AB 71.67 70.47
. CART 0.47 1.55 . . ADAS systems
Erisin ES8791V BT 57373 557 ’ Device ‘ Algorithm ‘ Duster (CAN) (CAN-FD)
RFC 1.63 4.97 AB 53.12 5457
CART 037 127
Samsung A6 ET .78 509
RFC 131 3.90
learning algorithms. We ran the algorithms on six Android CﬁgT 307 fg 319'2359
devices, i.e. two Android based head units, three smartphones Samsung S8 ET 1.84 6.71
and one tablet. For these devices we evaluated the execution }ZFBC 113' 1951 1439921
speed, since all our devices are equipped with at least 8§ GB of , CART 0.09 0.30
R Samsung Notel10+ BT 035 135
ROM memory, so there are no problems regarding the needed RFC e 759
memory to employ machine learning algorithms. The results AB 7.03 6.90
for the head units are listed in Tables 10 and 11. The results Samsung Tab S7 CQTRT g'gz 832
for each classifier contains the average time in microseconds RFC 0.26 08

that is needed to classify a CAN frame (Duster trace) and a
CAN-FD frame (ADAS Systems trace). In order to compute
the average time, we ran each classifier on one thousand
messages that include both genuine and attack messages.
As explained in section IV-B, within our Android application
we had to perform JNI calls in order to access the ML
algorithms. Obviously, each JNI call requires an additional
execution time. Therefore, each message which is received in
the application layer of the Android architecture and has to be
classified would require a JNI call. The results from Table 10
reflect this situation. We performed a JNI call for each of
the one thousand evaluated messages. On the head units,
CART, ET and RFC are executed between 6.20 and 16.07 ws
when classifying regular CAN frames and between 9.22 and
35.77 s when classifying CAN-FD frames. It seems that for
AB the generated code for CAN-FD frames is very similar
to the regular CAN frames, consequently the execution time
varies by a few micro-seconds. The AB classifier requires up
to 107.12 us to be executed on the PNI head unit and up to
84.01 us to be executed on the Erisin head unit, which proves
to be faster. We consider that the communication procedure
(via WiFi or USB) may also be implemented on the native
level, enabling the CAN messages to be received directly at
this level, and finally avoid multiple JNI calls. This approach
would decrease the overall execution time per message. With
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this in mind, we also measured the execution time with only
one JNI call. For this, we hardcoded the evaluated messages
in a C file which we compiled with the application so that
we can ran the algorithms on all messages at the native layer.
Consequently, we reduced the numbers of JNI calls to one.
These results are presented in Table 11. With only one JNI
call, the time decreases significantly for all algorithms on
both head units. On Duster dataset, the required execution
time of CART, ET and RFC ranges between 0.47 us and
3.82 us and between 1.55 us and 10.67 s in case of the
ADAS Systems dataset. AB is executed in less than 86 s on
the PNI head unit and in less than 72 s on the Erisin head
unit.

We further did the same evaluations on the Android
smartphones and tablet. The results are presented in
Tables 12 and 13. Table 12 contains the execution times eval-
uated with multiple JNI calls, while Table 13 lists the exe-
cution time results with one JNI call. The smartphones and
the tablet prove to be somewhat faster than the head units.
According to the results, the fastest algorithm is CART, which
required an execution time in the ranges of 0.77 us (on Sam-
sung Galaxy Tab S7) to 5.76 ws (on Samsung A6) when clas-
sifying frames from the Duster dataset. As expected, the time
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TABLE 14. Azure virtual machines.

VM Size oS [ Family CPU vCPUs Memory
Standard B2ms Linux (ubuntu 18.04) General purpose Intel Xeon Platinum 8171M 2.10 GHz 2 8 GB RAM
Standard F2s_v2 : Compute optimized Intel Xeon Platinum 8272CL 2.59 GHz 2 4 GB RAM
Standard B2ms Windows Server General purpose Intel Xeon Platinum 8171M 2.10 GHz 2 8 GB RAM
Standard F2s_v2 i Compute optimized Intel Xeon Platinum 8272CL 2.59 GHz 2 4 GB RAM
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FIGURE 14. Computational results on Android (multiple JNI calls) and cloud VMs for the four ML classifiers.

is higher for the CAN-FD frames (ADAS Systems dataset),
ranging from 1.27 s (on Samsung Galaxy Tab S7) to 8.02 s
(on Samsung A6). The algorithm which requires the highest
execution time is AB, which classifies CAN frames in ~8 s
on the most powerful device and in 60 ws on the slowest
device. The required execution time for ET and RFC lies
between CART and AB, with values between 1.02 ws and
13.56 ws. With only one JNI call, CART, ET and RFC are
executed in less than 2 s by all devices in case of Duster
dataset frames, and in less than 6.71 ws in case of the ADAS
Systems dataset frames. AB is executed between 6.90 (s and
54.57 s in case of both datasets.

As described in the introductory part, an important advan-
tage of Android devices, which can be connected on the
CAN bus, is that they can be also easily connect to cloud
services. This opens road to deploy more complex IDS algo-
rithms on cloud and take advantage of the high computational
resources that the cloud servers are capable of. In order to
get a clear picture of the computational capabilities of cloud
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TABLE 15. Cloud VMs - computational time for IDS algorithms [xs].

’ ™M ‘ 0s ‘Algorithm‘ Duster (CAN) A'()é:;ﬂﬁ;“s

AB 716 720

Linx CART 0.02 0.03

T 020 0.49

Standard RFC 0.15 0.28
B2ms AB T031 10.14
Windows | _CART 0.03 0.03

ET 0 056

RFC 012 027

AB 543 537

Linux CART 0.02 0.02

ET 0.1 037

Standard RFC 0.11 0.21
F25_v2S AB 749 765
Windows | _CART 0.02 5.02

ET 0.15 0.40

RFC 0.00 0.19

solutions, we evaluated the four classifiers (i.e. AB, CART,
ET and RFC) on cloud virtual machines (VMs). There-
fore, we deployed four VMs using Microsoft Azure service.
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TABLE 16. Automotive grade controllers - computational time and memory consumption for IDS algorithms.

. . Duster (CAN) ADAS systems
Microcontroller ‘ Algorithm ‘ [us] Code flash [kB] (CAN-FD) [11s] Code flash [kB]
AB 5320 5.8417 5466 5.8144
. CART 0.59 0.7519 1.14 103.7226
Tricore TC224 ET 360 105117 Wa 1573.6210
RFC 3.20 3.8496 11.6 476.4375
AB 112.7475 4.9062 113.1530 4.9902
Tricore TC397 CART 0.7075 1.3203 1.0321 136.6621
- ET 5.5111 16.5292 11.4667 2005.2207
RFC 3.9546 6.5976 8.9753 634.6835
AB 1570000 7.8300 1600000 7.8232
s12 CART 4300 2.0263 n/a 203.767
ET 37900 28.07 n/a code too large
RFC 3880 6.5068 n/a 511.9375
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FIGURE 15. Computational results on Android (m-multiple/o-one JNI call(s)) and cloud VMs vs. ECUs for the CART classifier.

We created two VMs running Ubuntu and two Windows
based VMs. For each operating system we chose a general
purpose VM with 8§ GB of RAM and a CPU running at
2.10 GHz and a compute optimized VM with 4 GB RAM
and a CPU running at 2.59 GHz. Each VM features two
virtual CPUs (vCPUs). The VMs specifications are listed
in Table 14. The runtime measurements are represented in
Table 15. In general, the cloud VMs seem to be the most
performant devices, from the ones that we evaluated, in terms
of execution speed. CART, ET and RFC classifiers are exe-
cuted in less than 1 ps by all the four VMs while AB is exe-
cuted between 5.37 ws and 10.31 ps, depending on the VMs
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configuration. It seems that VMs running Ubuntu are
somewhat faster than the Windows based VMs. However,
an important aspect that needs to be considered for cloud
solutions is the data transmission time, which depending on
various factors (e.g. location of the server, internet connec-
tion) can range from tens of milliseconds to hundreds of
milliseconds or even more. For a better visualization, the
computational results on the Android devices and cloud VMs
are depicted as bar-charts in Figure 14.

Next, we evaluated the algorithms on the automotive-grade
microcontrollers. In our experiments, we compiled the C code
with the default compiler options for each microcontroller,
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which leaves room for optimization in terms of memory or
execution speed, depending on the needs. For this class of
devices, in addition to execution speed, we also evaluate the
required code flash for each algorithm, since memory con-
sumption is one of the most stringent limitations of the auto-
motive microcontrollers. The results are listed in Table 16.
Regarding memory consumption, the situation looks good for
the algorithms that were trained on the Duster dataset. The
necessary free memory ranges up to 2.0263 kB in case of
CART, up to 7.83 kB in case of AB, up to 6.5976 kB in case of
RFC and up to 28.07 kB in case of ET. These values should
be acceptable for deploying IDS algorithms on automotive
ECUs. However, the situation gets more complicated with
the code that was generated for the ADAS Systems dataset.
Except AB, the required available memory increased a lot for
the other three classifiers. ET could be loaded only on the
Tricore TC397 memory. CART and RFC could be compiled
and linked by both the Infineon devices TC224 and TC397.
However, even if they fit in the memory, the requirements are
not very convenient, at least in case of RFC which requires
476.4375 kB of code flash memory on TC224, i.e., already
more than 40% of the entire available memory of this micro-
controller. We were not able to include and assess CART or
RFC on S12 as the compiler that we used for S12 has a 64 kB
code limitation.

From the execution point of view, most of the results for the
Infineon microcontrollers are comparable with the Android
devices. CART, ET and RFC algorithms trained on Duster
dataset are executed between 0.59 s and 5.60 ws. In order to
classify CAN-FD frames, CART and RFC requires between
1.0321 ws and 11.6 s on the two Infineon devices. The ET
algorithm which was trained on the ADAS Systems dataset
could be successfully evaluated only on the Infineon TC397.
It requires a bit over 2000 kB of code flash memory and
it’s executed in less than 11.5 ws. Based on our results,
the S12 microcontroller requires a few seconds to execute
the machine learning algorithms which is way too much for
the IDS requirements. This indicates that it’s not possible
to deploy such an IDS mechanism on microcontrollers with
low CPU operating frequencies. Based on the results that we
obtained, CART seems to be the most convenient classifier
to be deployed in terms of execution speed and required
memory (only applicable for microcontrollers). In Figure 15
we depicted the execution speed of CART classifier on the
Android devices and on the two Infineon microcontrollers.

VI. CONCLUSION

In this work we made a comparative analysis between two
implementation options for deploying an intrusion detection
system on the CAN bus: the use of an in-vehicle ECU and the
use of Android head units connected via a CAN decoder or of
an Android device connected to a WiFi bridge. The Android
devices do outperform in-vehicle ECUs, but not by such a
high margin when using one of the most powerful in-vehicle
controllers available on the market, i.e., an Infineon TC397.
However, this happens only if one can avoid expensive API
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calls over the JNI interface and if the code is run at the native
level on the ARM processor of the Android unit. This will
depend on the number of JNI calls that are time consuming,
i.e., when multiple calls are used, the high-end controllers
will outperform low-end Android devices. This implemen-
tation detail may significantly reduce the capability of such
devices. For example, when performing multiple calls from
Java to the C/C++ code of the classifier, the Android head
unit proved to be slower than the fastest microcontroller. Also,
we notice that the CAN decoder that was linked through the
serial interface to the Android Unit is not reliable enough for
recording the timestamps which further impedes the detection
rates of the IDS. Nonetheless, the same CAN decoder was
unable to cope with the frame rate from the bus and there was
a consistent frame loss. Finally, the WiFi bridge performed
very well giving almost identical results in terms of times-
tamps compared to industry standard VN1630. This suggests
this option as a reliable one for implementing an IDS inside
vehicles. The flexibility offered by implementing an IDS on
Android devices, which may take advantage of high CPU and
memory resources as well as cloud support, may open road
for the deployment of more advanced IDS in future cars.

LIST OF ACRONYMS
AB Adaptive Boosting.
ACK Acknowledge.
ADAS Advanced Driver-Assistance Systems.

AES Advanced Encryption Standard.

API Application Programming Interface.
APK Android Application Package.
AUTOSAR AUTomotive Open System ARchitecture.
BC Bagging Classifier.

CAN Controller Area Networks.

CAPL Communication Access Programming
Language.

CART Classification And Regression Tree.

COM Communication.

CrPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DLC Data Length Code.

DoS Denial of Service.

ECU Electronic Control Units.

EOF End of Frame.

ET Extra Tree.

FN False Negative.

FP False Positive.

GB Gradient Boosting.

HEV Hybrid Electric Vehicle.

IDS Intrusion Detection Systems.

IdsM Intrusion Detection System Manager.

IdsR Intrusion Detection System Reporter.

IFS Interframe Space.

ISO International Organization for
Standardization.

JNI Java Native Interface.

KNN K-Nearest Neighbors.
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LDA Linear Discriminant Analysis.
LR Logistic Regression.
MAC  Message Authentication Codes.
ML Machine Learning.
MLP  Multi-Layer Perceptron Network.
NB Gaussian Naive Bayes.
NDK  Native Development Kit.
OBD On-Board Diagnostic.
QEVs  Qualified Security Events.
RFC Random Forest.
ROM  Read-only Memory.
RRS Remote Request Substitution.
RTR Remote Transmission Request.
Sem Security event memory.
SOF Start of Frame.
SP1 Serial Peripheral Interface.
Suv Sport Utility Vehicle.
SVM Support Vector Machine.
TN True Negative.
TP True Positive.
TPMS Tire Pressure Monitoring Systems.
UART  Universal Asynchronous
Receiver/Transmitter.
VM Virtual Machine.
WPA2  WiFi Protected Access 11
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